Table 4 (cont.)

Bond	Length
P ————————————————————————————————————	1.57 (2)
PC(6)	1.82 (2)
O(1) - C(1)	1.43 (2)
O(3) - C(3)	1.46 (2)
C(1) - C(2)	1.51 (3)
C(2) - C(3)	1.55 (3)
C(2) - C(4)	1.52 (4)
C(2) - C(5)	1.55 (3)
C(6)—C(7)	1.43 (3)
C(7) - C(8)	1.34 (3)
C(8)C(9)	1.37 (4)
C(9) - C(10)	1.40 (3)
C(10)-C(11)	1.37 (3)
C(6) - C(11)	1.33 (3)

Table 5. Intermolecular bond angles and standard deviations

	Angle
O(1)—P ——O(2)	113·5 (0·9)°
O(1)—P ——O(3)	106.2 (0.8)
O(2)-PO(3)	111.4 (0.9)
O(1) - P - C(6)	107.6 (0.9)
O(2) - P - C(6)	111.7 (0.9)
O(3)—P ——C(6)	106.5 (0.9)
O(1) - C(1) - C(2)	113.8 (1.7)
O(3) - C(3) - C(2)	111.8 (1.5)
C(1) - C(2) - C(3)	105.8 (1.8)
C(1) - C(2) - C(4)	109.8 (2.0)
C(1) - C(2) - C(5)	113·2 (1·9)
C(3) - C(2) - C(4)	109.8 (2.0)
C(3) - C(2) - C(5)	104.8 (2.0)
PC(6)C(7)	114.3 (1.7)
P - C(6) - C(11)	121.0 (1.6)
C(6) - C(7) - C(8)	116.2 (2.0)
C(7) - C(8) - C(9)	120.1 (2.0)
C(8) - C(9) - C(10)	122.6 (2.0)
C(10)-C(11)-C(6)	118.2 (2.0)
C(11)-C(6)-C(7)	124.7 (2.0)
P - O(1) - C(1)	120.4 (1.5)
P - O(3) - C(3)	119.3 (1.5)
C(9)-C(10)-C(11)	118.0 (2.0)
C(4) - C(2) - C(5)	113.5 (2.0)

The single-bonded phosphorus-oxygen distance (mean 1.55 Å) and double-bonded phosphorus-oxygen distance (1.47 Å) agree with those found in several structures. Kraut & Jensen (1963) allot values of 1.56 and 1.49 Å respectively to these bonds. They have also observed that oxygen-phosphorus-oxygen angles increase with decreasing oxygen-phosphorus distances, and it can be seen that this confirmed by the present results. The P-C distance of 1.82 ± 0.02 Å compares satisfactorily with standard P–C distances (1.87 ± 0.02) Å), while, in the phosphorinane ring, the C–C distances are the expected value (mean 1.53 Å) and the C-O distances (mean 1.45 Å) are not significantly different from the usually accepted value for this bond, 1.43 Å. Large valency angles for oxygen atoms have been found in organic phosphates (Svetich & Caughlan, 1965) and this is the case in the present structure (mean value 120°). The carbon valency angles are normal except for the C-C-C angle in the heterocyclic ring which is unusually small (105°).

Bond distances in the benzene ring give an average value of 1.37 Å and bond angles an average value of 120° .

References

- ANDERSON, J. E. (1965). Quart. Rev. 19, 426.
- EDMUNDSON, R. S. (1964). Tetrahedron, 20, 2781.
- GEISE, H. J. (1967). Rec. Trav. Chim. Pays-Bas, 86, 362.
- HARGIS, J. H. & BENTRUDE, W. E. (1962). *Tetrahedron Letters*, **51**, 5365.

KILLEAN, R. C. G. (1967). Acta Cryst. 23, 1109.

- KILLEAN, R. C. G. & LAWRENCE, J. L. (1969). Acta Cryst. B25, 1750.
- KITAIGORODSKI, A. I. (1957). *Theory of Crystal Structure Analysis*, Translation 1961, p. 249. New York: Heywood.
- KRAUT, J. & JENSEN, L. H. (1963). Acta Cryst. 16, 79.
- SVETICH, G. W. & CAUGHLAN, C. N. (1965). Acta Cryst. 19, 645.

Acta Cryst. (1971). B27, 192

The Crystal and Molecular Structure of Dichlorodiaquobis(dicyandiamide)copper(II)

BY A. CHIESI, L. COGHI, A. MANGIA, M. NARDELLI AND G. PELIZZI

Istituto di Chimica Generale, Università di Parma, Parma, Italy

(Received 9 February 1970)

Crystals of Cu(OH₂)₂(C₂N₄H₄)₂Cl₂ are triclinic ($P\bar{1}$): a=5.42 (1), b=6.45 (1), c=9.31 (1) Å, $\alpha=74.5$ (0·2), $\beta=80.4$ (0·3), $\gamma=84.7$ (0·3)°, Z=1. The structure was solved and refined by means of three-dimensional Fourier methods (final R=8.3 %). The Cu^{II} atom lies on a centre of symmetry and is surrounded by a planar arrangement of two water molecules (Cu–O=2.00 Å) and two nitrile nitrogen atoms (Cu–N = 1.92 Å) from two dicyandiamide molecules. Two chlorine atoms, in the *trans* position with respect to that plane (Cu–Cl=2.87 Å), complete the coordination polyhedron to form an elongated octahedron.

The crystal structure of dichlorodiaquobis(dicyandiamide)copper(II) has been determined in order to study the behaviour of dicyandiamide in metal-coordination.

Dichlorodiaquobis(dicyandiamide)copper(II) occurs as blue-green triclinic platelets elongated along [100]. Cell constants, determined from Weissenberg and rota-

Table 1. Final atomic fractional coordinates ($\times 10^4$), thermal parameters ($\times 10^2 \text{Å}^2$)* with e.s.d.'s for nonhydrogen atoms

	$x/a(\sigma)$	$y/b(\sigma)$	$z/c(\sigma)$	$B_{11}(\sigma)$	$B_{22}\left(\sigma\right)$	$B_{33}(\sigma)$	$B_{12}\left(\sigma\right)$	$B_{13}(\sigma)$	$B_{23}\left(\sigma\right)$
Cu	0 (-)	0 (-)	0 (-)	194 (8)	222 (2)	158 (0)	3 (4)	18 (3)	-12(2)
Cl	2129 (4)	2697 (1)	1427 (1)	181 (7)	206 (1)	205 (1)	-19(3)	0 (3)	-63(1)
0	2634 (11)	- 2299 (5)	625 (3)	207 (21)	142 (3)	216 (4)	-4 (9)	-10 (9)	-21(5)
N(1)	2102 (14)	1235 (5)	- 1855 (4)	156 (24)	215 (5)	148 (3)	- 34 (10)	28 (10)	- 28 (6)
N(2)	3720 (15)	2324 (6)	- 4540 (4)	191 (25)	236 (6)	93 (2)	-31 (11)	17 (9)	- 30 (6)
N(3)	8028 (17)	2178 (8)	-4398 (4)	216 (26)	342 (11)	188 (3)	-9 (15)	-49 (10)	14 (9)
N(4)	6559 (16)	3178 (4)	- 6656 (4)	223 (27)	225 (5)	133 (3)	- 57 (10)	42 (11)	- 42 (6)
C(1)	3041 (15)	1735 (5)	- 3099 (3)	123 (27)	135 (4)	128 (3)	- 20 (10)	13 (10)	-25 (6)
C(2)	6105 (15)	2531 (5)	- 5177 (4)	133 (28)	161 (4)	107 (3)	- 18 (11)	25 (10)	-21 (6)

* The B_{ij} values refer to the formula: exp $[-(b_{11}h^2 + b_{22}k^2 + b_{33}l^2 + b_{12}hk + b_{13}hl + b_{23}kl)]$ in which $b_{11} = \frac{1}{4}a^{*2}B_{11}$, $b_{12} = \frac{1}{2}a^*b^*B_{12}$, etc.

tion photographs (Cu $K\alpha$, $\lambda = 1.5418$ Å) taken around the elongation axis, are as follows (standard deviations given in parentheses are in units of the last decimal figure):

Cu(OH₂)₂(C₂N₄H₄)₂Cl₂ M = 338.7 a = 5.42(1), b = 6.45(1), c = 9.31(1) Å $\alpha = 74.5(0.2), \beta = 80.4(0.3), \gamma = 84.7(0.3)^{\circ}$ $V = 308.8 Å^{3}, Z = 1, D_{m} = 1.815, D_{c} = 1.821 \text{ g.cm}^{-3}, F(000) = 171, \mu = 65.96 \text{ cm}^{-1}$ Space group: $P\overline{1}$ (from structure analysis).

Three-dimensional intensity data were determined photometrically on integrated and non-integrated Weissenberg photographs taken around [100], up to the fourth layer (multiple-film technique, Cu K α). After correction for Lorentz and polarization factors, the intensities were placed on the same relative scale using a set of short oscillation ($\Delta \omega = 20^{\circ}$) Weissenberg photographs, all registered with the same exposure on the same film. The absolute scale was then established by Wilson's method.

The structure was solved by the heavy-atom method and refined by means of Booth's differential synthesis with anisotropic thermal parameters down to a final R=8.3%. All the hydrogen atoms except those of water molecules were located from the $\rho_o - \rho_c$ final map. Final coordinates with thermal parameters are listed in Tables 1 and 2. The comparison between observed and calculated peak shapes is shown in Table 3, while the observed and calculated structure factors are compared in Table 4.

Table 2 Coordinates ($\times 104$) for the hydrogen	atome
Table 2. Coordinates (~ 10) for the hydrogen	uioms
of dicyandiamide with their isotropic R value	05
	63

	.x/a	y/b	z/c	В
H(1)	0	2167	-4833	2.48
H(2)	8000	2000	-3333	2.48
H(3)	8333	3000	- 7167	1.93
H(4)	5000	3333	- 7167	1.93

Fig. 1 shows a clinographic projection of the structure. The copper(II) atom lies on a centre of symmetry and is surrounded by a planar arrangement of two oxygen atoms from two water molecules and two nitrogen atoms from two dicyandiamide molecules at the corners of a distorted square. Dicyandiamide behaves as a monodentate ligand through nitrile nitrogen atoms. The coordination is completed by two chlorine atoms, which are on opposite sides with respect to the square, so that the whole polyhedron appears as an elongated octahedron.

Table 3. Atomic peak heights (e.Å⁻³) and curvatures (e.Å⁻⁵) with their e.s.d.'s

		Q	$-A_{hh}$	$-A_{kk}$	$-A_{ll}$	Akl	Anı	Ank
Cu	obs.	71.9	504	750	789	- 155	-40	- 23
	calc.	72.7	503	757	788	-162	- 46	- 27
Cl	obs.	38.6	273	432	422	-115	- 36	- 30
	calc.	38.9	270	430	423	-113	- 37	- 28
0	obs.	14.5	99	151	135	-30	-13	- 3
	calc.	14.6	99	150	137	- 31	-13	- 4
N(1)	obs.	13.2	89	125	166	-25	6	- 14
	calc.	13.4	89	126	166	- 26	6	-14
N(2)	obs.	12.5	79	123	130	- 25	0	-6
	calc.	12.6	78	125	128	- 26	- 1	-6
N(3)	obs.	10.3	62	92	102	-15	-20	-6
	calc.	10.4	60	95	102	-17	-19	-6
N(4)	obs.	11.8	73	122	115	- 37	- 5	-12
. ,	calc.	11.9	72	125	113	- 37	- 5	-12
C(1)	obs.	11.3	74	130	129	-41	-16	- 8
	calc.	11.5	72	130	128	-41	- 15	- 8
C(2)	obs.	11.3	77	124	132	- 31	- 7	-8
	calc.	11.6	76	124	133	- 31	- 8	- 8
	e.s.d.	0.5	2	3	3	2	1	1

Distances in the coordination polyhedron agree well with those found in other octahedral copper(II) complexes, e.g.:Cu-O=1.97, Cu-N=1.99, Cu-Cl=2.84 Å in bis(semicarbazide)copper(II) (Nardelli, Fava Gasparri, Boldrini & Giraldi Battistini, 1965); Cu-O= 1.935, Cu-Cl=2.960 Å in bis(biuret)copper(II) dichloride (Freeman & Smith, 1966); Cu-O=1.986, 1.931, Cu-N=1.979, 1.996 Å in bis(L-histidine)copper-(II) dinitrate dihydrate (Evertsson, 1969).

The dicyandiamide molecule is practically planar; the maximum displacement from the least-squares mean plane being 0.011 Å for C(2). Coordination appears not to affect the structural parameters of that ligand as can be seen from the data quoted in Table 5,

Table 4. Observed and calculated structure factors

A minus sign for F_0 means 'less than'.

u 23401112233440112233440112233440112233440112233440112233440112233440112233101122334400000000011111122223344001111111111
$\begin{array}{c} 10F_{\underline{0}} \\ 225 \\ 1113 \\ 3400 \\ 360 \\ 173 \\ 340 \\ 150 \\ 150 \\ 150 \\ 151 \\ 152 \\ 226 \\ 183 \\ 179 \\ 226 \\ 183 \\ 179 \\ 121 \\ 184 \\ 122 \\ 183 \\ 179 \\ 122 \\ 183 \\ 179 \\ 122 \\ 121 \\ 12$
$\begin{array}{c} 10F_{\underline{c}} \\ -3300 \\ -1266 \\ 3766 \\ 2031 \\ 3768 \\ 2031 \\ 3582 \\ 2031 \\ 3582 \\ 2031 \\ 3582 \\ 2031 \\ 3582 \\ 2031 \\ 3582 \\ 2031 \\ 3582 \\ 3511 \\ 3582 \\ 3511 \\ 3522 \\ 399 \\ 11151 \\ 1151 \\ 122 \\ 352 \\ 128 \\ 12$
, 223354444001111122222355344440011112222353544440011112222355555556666666666666666667777777777
106 2 232 83 232 83 112 33 101 19 102 33 233 24 244 263 232 22 64 56 117 11 1180 32 329 22 64 16 117 11 1180 31 307 22 250 31 307 22 250 31 307 231 250 116 113 117 311 337 311 337 3235 242 336 337 337 337 338 331 339 307 311 311 311 311
100 ± 241 733 114 733 114 733 114 733 114 733 114 733 114 112 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 114 112 114 112 114 112 114 114 114 114 114 114 114 114 114 114 114 114 114 114
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
107 103 103 222 109 62 109 62 109 62 117 139 128 139 127 141 138 138 128 117 129 124 1401 124 155 3700 111 124 123 130 124 137 124 134 255 3700 111 124 2231 136 124 134 135 55 111 124 123 335 136 137 136 137 137 75 228- 236 236 266 229- 77 361 130 1361 139 123 316 136
$\begin{array}{c} \underline{c} \\ \underline{c} \\ 118 \\ 294 \\ 47 \\ 47 \\ 47 \\ 47 \\ 47 \\ 47 \\ 47 \\ $
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
98 77 7 98 77 7 145 81 98 77 7 145 81 149 9 83 - 122 2 26- 50 51 149 9 63 4 90 0 51 22 22- 22- 51 1 13 5 56 - 77 2 22 88 81 - 103 16 5 - 22 - 23 - 24 - 22 - 24 - 23 - 24 - 2
100 <u>c</u> 388 86 389 82 281 139 82 282 21 283 86 404 4 -165 6 404 -165 6 30 -126 -65 5 126 404 4 -165 6 -136 -136 -136 -136 -136 -136 -136 -136
, , , , , , , , , , , , , , , , , , ,
106 2 2000 195 195 49 1123 124 124 75 125 126 126 53 120- 58 121 121 124 121 124 121 120- 128 55 111 124 127 105 124 127 106 100- 128 56 113 120- 100 122 12- 48 121 128 56 130- 128 130- 128 130- 128 128 14- 130- 128 142- 114- 131 122 131 123 225 233 225 233 2264 121 1313
$\begin{array}{c} 10^{4} \underline{c} \\ 1177 \\ 182 \\ 177 \\ 182 \\ 123 \\ 133 \\ 133 \\ 133 \\ 133 \\ 134 \\ 111 \\ 123 \\ 133 \\ 133 \\ 133 \\ 134 \\ 111 \\ 134 \\ 13$
1 2424424424424424424424444001111222233344440011111222233334444001111222233340112223340112201122
10 ¹⁰ <u>9</u> 97 300 97 300 124 74 8 288 28 221 3 221 3 221 3 223 2 124 288 28 224 3 223 2 124 20 223 2 125 2 224 2 126 2 224 2 127 2 128 8 288 28 209 2 129 2
$\begin{array}{c} 107\\ \underline{r_{E}}\\ \hline \\ 1000\\ -22\\ 1000\\ -22\\ 11\\ 1240\\ -22\\ 2402\\ 12\\ 2402\\$
1 5855555555555555555555555555555555555
$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Table 4 (cont.)

h k	1 10F	10F	h k	1 10	0 10F	<u>e</u> h	k 1	10F_0	^{10F} c	h k	1 10F	10F <u>c</u>	h k l	10F <u>9</u>	10F	h k l	10F_0	10F <u>5</u>	h k 1	10F <u>0</u>	10F <u>c</u>
2 0 2 0 3 0 4 0 4 0	6 237 6 106 6 18 6 208 6 39 6 39	220 -97 - 16 199 -32 183	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6 1 6 1 6 1 6 1	67 6 10 9 30 5 93 8 97 20 24- 3	7 3 6 3 5 3 2 3 3 4 4 4	$ \begin{array}{cccc} 1 & 7 \\ \overline{1} & 7 \\ 1 & 7 \\ \overline{1} & 7 \\ 1 & 7 \\ 1 & 7 \\ \overline{1} & 7 \\ $	157 55 202 67 115 29-	153 46 188 61 107 9	1 5 2 5 3 5 3 5 4 5	7 171 7 78 7 136 7 170 7 44 7 66	168 83 134 168 50 73	1 3 8 1 3 8 1 3 8 2 3 8 2 3 8 2 3 8 2 3 8	47 171 84 29- 23- 121	-44 166 77 26 9 11 3	4 1 9 4 1 9 0 2 9 0 2 9 1 2 9 1 2 9	38 122 43 93 158 137	-27 118 58 84 147 131	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11- 95 90 39 20- 193	13 92 79 39 -6 196
0 1 0 1 1 1 1 1 1 1 1 1	6 233 6 57 6 71 6 235 6 28 6 316	233 58 57 225 - 3 313	2 4 3 4 3 4 3 4 4 4	6 6 6 1 6	29- 3 191 15- 2 14 10 19 10 13 7	2 4 5 4 6 0 8 0 5 1 5 1	1 7 1 7 2 7 2 7 2 7 2 7 2 7	62 77 124 56 59 30-	63 74 124 -54 50 13	0 6 1 6 1 5 2 6 2 6 3 6	7 34- 7 82 7 42 7 129 7 64 7 60	47 80 -28 124 59 63	2 3 8 3 3 8 3 3 8 3 3 8 4 3 8 0 4 8	117 80 158 96 82 121	-112 -70 168 90 82 128	1 2 9 1 2 9 2 2 9 2 2 9 2 2 9 2 9 2 9 2 9 2 9 2	44 75 183 70 16- 25-	34 62 187 66 28 -4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	115 69 122 11- 88 26-	1 38 58 1 30 2 5 8 1 - 24
2 1 2 1 2 1 3 1 3 1	6 80 6 318 6 87 6 131 6 168 6 23	-58 315 77 115 164 33	4 4 4 7 0 5 0 5 1 5 1 5	6666	7 50 5 52 7 183 56 -3 56 3	9 1 5 1 1 2 8 2 5 2 9 2	2 7 2 7 2 7 2 7 2 7 2 7 2 7	1 39 64 251 262 165 45	141 59 248 261 160 35	4 6 0 7 1 7 2 7 3 7 0 0	7 9- 7 76 7 118 7 20- 7 15 8 38-	-5 84 121 27 -18 33	0 4 8 1 4 8 1 4 8 1 4 8 1 4 8 2 4 8	87 77 50 109 194 64	92 -56 52 119 189 90	3 2 9 3 2 9 3 2 9 4 2 9 0 3 9 0 3 9	56 13- 119 26- 170 23-	-36 9 119 25 176 10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15- 19- 87 28 33- 27-	27 1 83 33 43 15
3 1 3 1 4 1 4 1 4 1	6 282 6 129 6 218 6 60 6 104 6 129	280 -109 219 -47 99 125	1 5 2 5 2 5 2 5	6 2 6 1 6 1 6 1 6 1	3 8 .9 21 .0 4 .3 16 .5 11 .2 9	9 3 7 3 8 3 2 4 8 4	2 7 7 2 7 7 2 7 7 2 7 7 2 7 7 2 7 7 2 7 7 2 7 7 2 7 7 2 7 7 2 7 7 2 7 7 2 7 7 2 7 7 2 7	144 120 174 254 32 37	140 116 160 244 -22 41	1 0 1 0 2 0 2 0 3 0 3 0	8 30- 8 252 8 203 8 116 8 60 8 41	9 2 39 18 3 10 3 55 32	2 4 8 2 4 8 3 4 8 3 4 8 4 4 8 0 5 8	15- 26- 96 48 70 41	18 32 98 47 68 -51	1 3 9 1 3 9 1 3 9 1 3 9 2 3 9 2 3 9	104 43 53 64 72 108	93 44 67 62 -57 118	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	143 67 84 60 87 65	137 64 78 74 92 -77
0 2 1 2 1 2 1 2 1 2 1 2	6 33 6 79 6 83 6 177 6 111 6 259	84 62 158 95 260	3 5 3 5 4 5 4 5 0 6	6 1 6 1 6 1 6 1	0 16 0 6 .61 .6 11 .7 4	3 4 7 4 3 0 5 0 6 0 7 1	273737	23 93 106 95 273 29-	20 84 114 102 278 -16	4 0 4 0 0 1 0 1 1 1 1 1	8 100 8 16- 8 38- 8 118 8 30- 8 202	98 35 -4 111 26 198	1 5 8 1 5 8 2 5 8 2 5 8 3 5 8 3 5 8	29- 85 121 186 130 9-	33 87 123 187 132 24	2 3 9 3 3 9 3 3 9 4 3 9 0 4 9 1 4 9	75 68 35 132 37 87	65 73 34 128 40 83	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	65 43 194 96 14- 16-	70 44 203 111 20 4
2 2 2 2 2 2 3 2 3 2	6 29 6 255 6 255 6 192 6 151	11 252 260 197 146	1 6 2 6 2 6 3 6 3 6	6 10 6 10 6 10	9- 3 0 6 00 9 99 11 4 15 6 8	2 1 5 1 9 2 5 2 9 2 8 2 8 2	3 3 7 7 7 7 7 7 7 7 7 7 7 7 7	219 30- 70 79 56 85	-2 68 66 57 89	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8 62 8 121 8 132 8 151 8 27- 8 251	98 127 132 17 257	4 5 8 0 6 8 1 6 8 1 6 8 2 6 8 2 6 8	23- 31- 134 32 35 53	15 31 131 30 42 57	1 4 9 2 4 9 2 4 9 3 4 9 4 4 9 0 5 9	27- 173 122 90 32-	40 0 171 124 79 25	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50 146 53 54 11- 64	63 135 -48 56 65
3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6 47 6 20 6 177 6 172 6 24 6 39	46 169 165 - 2 38	4 6 0 7 1 7 1 7 2 7 2 7	6 1 6 1 6 6	1 5 2 15 2 - 3 6 7 .4- 2	3 3 5 3 5 3 8 3 8 3 9 4 1 4	377777	36 106 13- 77 64 108	-23 105 -8 73 58 110	$ \begin{array}{c} 3 & 1 \\ 3 & 1 \\ 3 & 1 \\ 4 & 1 \\ 4 & 1 \\ 4 & 1 \end{array} $	8 220 8 48 8 120 8 91 8 55 8 71	231 -47 105 91 53 42	3 6 8 4 6 8 0 7 8 1 7 8 2 7 8 3 7 8	14- 23 104 43 16- 6-	32 127 38 -29 6	1 5 9 1 5 9 2 5 9 2 5 9 3 5 9 4 5 9	86 38 149 16- 15- 39	83 38 151 15 12 -35	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	69 22- 100 12- 7- 95	-83 23 117 -1 22 91
0 3 0 3 1 3 1 3 1 3 1 3	6 109 6 167 6 219 6 101 6 128 6 28	108 187 208 88 119 26	3 7 4 7 0 0 1 0 1 0 2 0	6 7 2 7 2 7 2 7	36 -3 .01 .8 21 .9 26 .6 6 .0 -6	1 4 3 0 9 0 7 1 9 1 1 1	37 47 47 47 47	147 81 182 93 86 74	141 97 177 86 90 67	4 1 0 2 0 2 1 2 1 2 1 2 1 2	8 18- 8 120 8 108 8 281 8 111 8 27-	-25 122 116 278 100 14	$\begin{array}{cccccc} 0 & 0 & 9 \\ 1 & 0 & 9 \\ 1 & 0 & \overline{9} \\ 2 & 0 & 9 \\ 2 & 0 & \overline{9} \\ 3 & 0 & 9 \end{array}$	114 29- 157 28- 158 120	105 -13 147 31 155 185	0 6 9 1 6 9 1 6 9 2 6 9 3 6 9 1 7 9	118 32 68 47 11- 8-	1 38 29 7 3 48 -7 3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	118 45 43 7- 11- 100	118 45 32 4 -19 101
2 3 2 3 2 3 2 3 3 3 3 3	6 201 6 48 6 112 6 126 6 19 6 115	191 -47 102 123 30 107	2 0 3 0 3 0 4 0 4 0 0 1	7 13 7 7 7 1 7 1 7 1 7 1	24 11 35 2 .9 36 13 .6 10 88 19	0 1 8 2 9 2 5 2 5 2 5 2 3 3	Z 7 4 7 4 7 4 7 2 7 2 7	224 29- 22- 18- 115 37	220 -29 -13 12 119 41	1 2 2 2 2 2 2 2 2 2 2 2 3 2	8 93 8 29- 8 70 8 95 8 118 8 55	-79 31 61 95 107 60	3 0 9 0 1 9 0 1 9 1 1 9 1 I 9 1 I 9 1 1 9	12- 47 199 94 80 141	15 -62 207 82 71 118	$\begin{array}{cccc} 0 & 0 & 10 \\ 1 & 0 & \underline{10} \\ 1 & 0 & 10 \\ 2 & 0 & 10 \\ 2 & 0 & \overline{10} \\ 3 & 0 & 10 \end{array}$	32- 25- 108 100 151 95	-13 34 104 103 152 94	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5- 142 20- 60 25- 50	3 -18 65 39 -33
3 3 4 3 4 3 4 3 4 3 4 3 4 3	6 16 6 234 6 29 6 145 6 53 6 26	- 10 233 - 0 141 57 - 29	$ \begin{array}{cccc} 0 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 2 & 1 \end{array} $	7 2 7 2 7 2 7 2 7 2 7 1	4 5 9 -2 3 26 1 -7 3 26 2 11	1 3 5 3 9 4 8 4 8 0 4 0	Z 7 Z 7 Z 7 Z 7 Z 7 S 7 S 7	67 105 163 58 39 56	63 -95 156 58 50 55	3 2 3 2 3 2 4 2 4 2 4 2	8 137 8 126 8 133 8 31 8 21- 8 115	129 120 137 39 5 117	1 1 9 2 1 9 2 1 9 2 1 9 2 1 9 2 1 9 3 1 9	95 249 59 22- 152 89	85 253 -57 27 146 86	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	53 125 91 53 110 58	61 125 82 51 109 47	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	106 20- 129 22- 74 10-	108 37 144 37 82 -24
0 4 0 4 1 4	6 202 6 36 6 161	207 - 29 153	2 1 2 1 2 1	7 1 7 1 7	1 13 6 18 9- 1	91 71 31	57 57 57	84 76 10-	-70 88 9	0 3 0 3 1 3	8 235 8 90 8 171	253 96 174	3 1 9 3 1 9 3 1 9	66 9- 120	54 1- 122	2 1 10 2 1 10	95 21-	97 9	$\begin{array}{cccc} 2 & 4 & 11 \\ 3 & 4 & 11 \end{array}$	86 61	87 62

Fig. 1. Clinographic projection of the structure.

which concerns coordinated and uncoordinated dicyandiamide.

Fig. 2 shows the packing of the molecules, which is mainly determined by the following hydrogen-bonds:

$O-H\cdots Cl^i$	3·18(1) Å	
O–H···Cl ⁱⁱ	3.14(1) (not	shown in figure)
$N(4)-H(4)\cdots Cl^{iii}$	3.30(1)	N(4)H(4)Cl ⁱⁱⁱ 160.7°
$N(4)-H(3)\cdots Cl^{i\nu}$	3.28(1)	N(4)H(3)Cl ^{iv} 166·4°

The other packing contacts less than 3.5 Å are as follows:

$\mathbf{O} \cdots \mathbf{N}(1^1)$	3·43(2) A
$O \cdots N(3^i)$	3.49(1)

The authors are indebted to the Consiglio Nazionale delle Ricerche (Rome) for financial support.

3.40(1)

3.08(2)

3.11(2)

 $N(1) \cdots N(3^v)$

 $N(2) \cdots N(3^v)$

 $N(3) \cdots C(1^{vi})$

 $i = 1 - x, \overline{y}, \overline{z}$ $ii = x, y - 1, \overline{z}$ iii = x, y, z - 1 iv = x + 1, y, z - 1v = x - 1, y, z

 $v_i = x + 1, y, z$

Table 5. Interatomic distances and bond angles in coordinated and uncoordinated dicyandiamide

	I	II	III	IV
N(1)-C(1)	1·151 Å	1·192 Å	1·16 (1) Å	1·16 (1) Å
C(1) - N(2)	1.299	1.292	1·29 (1)	1·29 (1)
N(2) - C(2)	1.330	1.335	1.33 (1)	1.36 (1)
C(2) - N(3)	1.333	1.332	1·34 (1)	1.33 (1)
C(2) - N(4)		_	1.32(1)	1.33 (1)
N(1)C(1)N(2)	175°	180°	170·6 (0·9)°	172.6 (0.6)
C(1)N(2)C(2)	119	119	123.1 (0.7)	118.6 (0.6)
N(2)C(2)N(3)	123	124	123.8 (0.4)	124.4 (0.5)
N(2)C(2)N(4)	117	118	117.4 (0.7)	116.6(0.5)
N(3)C(2)N(4)			118.8 (0.7)	118.9 (0.6)

I Dicyandiamide (neutron diffraction) (Rannev, Ozerov, Datt & Kshnyakina, 1966).

II Dicyandiamide (X-ray diffraction) (Zvonkova, Krivnov & Khvatkina, 1964).

III Dichlorodiaquobis(dicyandiamide)copper(II) (present paper).

IV 1-(2-Aminoethyl)biguanidecyanoguanidinecopper(II) sulphate monohydrate (Coghi, Mangia, Nardelli, Pelizzi & Sozzi, 1968).

Fig.2. Projection of the structure along [010].

References

- Coghi, L., MANGIA, A., NARDELLI, M., PELIZZI, G. & Sozzi, L. (1968). Chem. Comm. p. 1475.
- EVERTSSON, B. (1969). Acta Cryst. B25, 30.
- FREEMAN, H. C. & SMITH, J. E. W. L. (1966). Acta Cryst. 20, 153.

Acta Cryst. (1971). B27, 197

The Crystal Structure of [2.2] Metaparacyclophane-1,9-diene

BY A.W. HANSON

Biochemistry Laboratory, National Research Council, Ottawa, Canada

(Received 26 January 1970)

[2.2]Metaparacyclophane-1,9-diene, $C_{16}H_{12}$, crystallizes in the orthorhombic system, space group *Pbca*, with $a = 14.91 \pm 1$, $b = 18.51 \pm 1$, $c = 8.133 \pm 5$ Å, Z = 8. The intensity data were measured with a fourcircle diffractometer and scintillation counter. The structure was determined by symbolic addition and refined by block-diagonal least-squares analysis of 1378 reflexions to a final *R* index of 0.046. The two aromatic rings are inclined to each other at 41°. Both show significant boat distortion, which is moderate for the *meta*-bridged ring, and severe for the *para*-bridged ring.

[2.2]Metaparacyclophane-1,9-diene (I; Hylton & Boekelheide, 1968) is one of a series of compounds prepared by Professor Boekelheide and his associates. Nuclear magnetic resonance studies of the material in solution fail to resolve the individual protons of the *para*bridged ring, suggesting that the molecule has *mm*2 symmetry, with the two rings perpendicular to each other (Boekelheide, 1968). This conformation could, of course, be simulated by rapid 'flipping' of the molecule between two conformations related by the apparent symmetry. The X-ray analysis was undertaken in order to determine the conformation in the solid state. It is found that the rings are in fact by no means perpendicular, but are inclined to each other at 41° .

Experimental

Crystal data

 $C_{16}H_{12}$ F.W. 204.3

Orthorhombic,

 $a = 14.91 \pm 1, b = 18.51 \pm 1, c = 8.133 \pm 5 \text{ Å}$

- (Cu $K\alpha_1$, $\lambda = 1.5405$ Å), V = 2245 Å³, $D_m = 1.20$ g.cm⁻³, Z = 8, $D_x = 1.21$ g.cm⁻³, $\mu = 6.3$ cm⁻¹.
- Space group Pbca (D_{2h}^{15}) (from precession photographs. Systematic absences: 0kl for k odd, h0l for l odd, hk0 for h odd).

The crystals supplied were colourless and translucent, displaying various faces of which [010] was the most prominent. The specimen used for data collection was a triangular plate, 0.3 mm thick, and 0.5 mm to the side. The material was found to decompose in conditions of moderate humidity, and the specimen was therefore enclosed in a thin-walled Lindemann glass capillary.

The intensities were measured with a Picker fourcircle diffractometer and scintillation counter, using nickel-filtered Cu K α radiation with pulse-height discrimination. The θ -2 θ scan method was used (2° for $2\theta < 100^\circ$, 3° otherwise), and background counts were measured at the beginning and end of each scan. Reflexions for which the net count was less than 10, or less than 20% of the gross count, were treated as unobserved. The yield of observed reflexions was rather low. In the range explored ($2\theta < 130^\circ$), 1380 of a possible 1904 reflexions were observed, and of these the net count exceeded four times the threshold value for only 956. Absorption corrections were not applied.

The structure was determined routinely by the symbolic addition procedure of Karle & Karle (1966). Refinement was by block-diagonal least-squares. The weighting scheme used was $w = w_1w_2$, where

$$w_1 = F_o/10 \text{ for } F_o < 10$$

= 10/F_o for F_o \ge 10
$$w_2 = 2.5 \sin^2 \theta \text{ for } \sin^2 \theta < 0.4$$

= 1 for \sin^2 \theta \ge 0.4

(The nominal minimum value of F_o is 2.5).

This weighting scheme was reasonably effective in removing trends in the magnitudes of the residuals.

- NARDELLI, M., FAVA GASPARRI, G., BOLDRINI, P. & GIRAL-DI BATTISTINI, G. (1965). Acta Cryst. 19, 491.
- RANNEV, N. V., OZEROV, R. P., DATT, I. D. & KSHNYA-KINA, A. N. (1966). Kristallografiya, 11, 175. Soviet Physics-Crystallography, 11, 177.
- ZVONKOVA, Z. V., KRIVNOV, V. YA. & KHVATKINA, A. N. (1964). Doklady Akad. Nauk, 155, 2; see also Kristallografiya, 11, 175.